Click here to check out why greenhouse-warming theory is physically impossible

WHAT REALLY CAUSES GLOBAL WARMING?
GREENHOUSE GASES OR OZONE DEPLETION?
DO YOU WONDER..
If greenhouse-warming theory could be mistaken?



Greenhouse gases cannot physically cause observed global warming

In fact, greenhouse-warming theory is not even physically possible!

Global mean surface temperatures have warmed approximately one degree Celsius since 1970, causing problems for life on Earth. The greatest concern over climate, however, is whether warming of several degrees is highly likely later in this century as predicted by most computer models based on greenhouse-warming theory. Must humanity act promptly to prevent calamity by spending trillions of dollars to reduce greenhouse-gas emissions? The answer now appears to be no because greenhouse-warming theory, currently thought by most climate scientists to be the primary cause of global warming, appears not only to be mistaken, it appears to be physically impossible as explained below.

Recent warming and most warming throughout Earth history are explained far more precisely and in much greater detail by observed depletion of the ozone layer. Depletion of the ozone layer allows more than usual very energetic solar ultraviolet radiation to reach Earth. This depletion was caused by humans from 1970 to 1998 and, throughout Earth history, by large effusive, basaltic, volcanic eruptions that covered hundreds to millions of square kilometers of land (WhyClimateChanges.com).

Problems with greenhouse-warming theory

Greenhouse-warming theory assumes that heat, radiated by Earth, is absorbed by greenhouse gases in Earth’s atmosphere, causing, in one way or another, mean global surface temperature to rise. This rise in temperature is thought to be a few degrees Celsius when the atmospheric concentration of carbon dioxide is doubled. In this way, greenhouse-warming theory assumes that the Earth-atmosphere system is warmed by absorbing Earth’s own radiation.

But such warming is not physically possible. No body of matter can be warmed in any way by absorbing its own radiation. If that were possible, bodies of matter could spontaneously heat up. Something we all know does not happen.

Imagine two bodies of matter next to each other. Each at the same temperature. Each potentially absorbing radiation from the other. Nothing can get hotter. Nothing will get hotter, no matter how long you wait. Both bodies can lose heat to cooler surroundings, but neither can absorb heat from the other body as long as both are at the same temperature. Heat is what a body of matter must absorb to get hotter. Heat is well-observed to flow only from a body at a higher temperature to a body at a lower temperature. The smaller the temperature difference, the slower the flow of heat. Zero difference in temperature means zero flow of heat, which means zero increase in temperature of the absorbing body. Earth cannot physically be warmed by its own radiation. This single observation is completely sufficient to show that greenhouse-warming theory is not physically possible, but there are many other reasons based on a fundamental misunderstanding of what heat physically is and how heat physically flows.

Some scientists propose that greenhouse gases act like a blanket surrounding Earth, keeping Earth about 33oC warmer than expected for a planet at Earth’s distance from Sun. Blankets are well-known to slow the loss of thermal energy from a body of matter, but a blanket cannot be the source of new thermal energy required to increase the temperature of the body under the blanket, unless it is an electric blanket that adds thermal energy from somewhere else. Earth’s blanket is observed to be the stratosphere, which does act like an electric blanket.

Temperature in the atmosphereThe stratosphere is the only part of the atmosphere below the thermosphere where temperatures increase with increasing altitude from approximately -51oC at the base of the stratosphere to -15oC at the top of the stratosphere. This temperature increase is caused by high-energy solar ultraviolet radiation causing dissociation of the bonds that hold together gas molecules such as oxygen and ozone. Upon dissociation, when the bond is broken, the pieces of a gas molecule fly apart at high velocity. Temperature of a gas is well-known to be proportional to the average velocity of all gas molecules squared. Thus, when a molecular bond is dissociated, the energy holding the atoms together is converted instantaneously and completely into increased air temperature. Greenhouse gases, on the other hand, absorbing terrestrial infrared radiation that is not energetic enough to cause dissociation, have never been shown by experiment to cause significant increase in air temperature. See JustProveCO2.com.

Other scientists argue that slowing the cooling of Earth, which is heated by Sun, would cause a net increase in thermal flux absorbed by Earth, which would cause an increase in Earth’s surface temperature. This widespread assumption, emphasized by Joseph Fourier in 1822, turns out to be mistaken. To understand why, we need to understand the observed physical relationships between thermal energy, heat, and temperature.

Heat is a broad spectrum of values

Thermal energy in matter is well observed to be the oscillation, at trillions of cycles per second, of all the bonds holding matter together. The higher the thermal energy, the higher the amplitudes and frequencies of oscillation, and the higher the temperature of the body of matter. In 1900, Max Planck derived an equation by trial and error that has become known as Planck’s Law. Planck’s Law calculates the observed intensity or amplitude of oscillation at each frequency of oscillation for radiation emitted by a body of matter at a specific temperature. Thermal radiation from Earth, at a temperature of 288 Kelvin, consists of the narrow spectrum of frequencies of oscillation shown in green. Thermal radiation from the tungsten filament of an incandescent light bulb at 3300K consists of a broader spectrum of frequencies shown in yellow and green. Thermal radiation from Sun at 5770K consists of a much broader spectrum of frequencies shown in red, yellow and green.
Plancks Law linear and log plots

Note in these plots of Planck’s empirical law that the higher the temperature, the broader the spectrum of frequencies, the higher the amplitude of oscillation at each and every frequency, and the higher the frequencies of oscillation that are oscillating with the largest amplitudes of oscillation. Radiation from Sun (red) clearly contains much higher frequencies and amplitudes of oscillation than radiation from Earth (green).

These frequencies and amplitudes of oscillation contained within thermal radiation must also be the frequencies and amplitudes on the surface of the emitting body. They must exist on the surface of the radiating body for that body to be at the temperature shown.

Heat, that which must be absorbed by matter to increase its temperature, is similarly a broad spectrum or continuum of frequencies and corresponding amplitudes. For example, the broad continuum of heat that Earth, with a temperature of 288K, must absorb to reach a temperature of 3300K is shown by all the values within the yellow-shaded area in the figure. The physical properties of heat and the thermal effects of this heat are determined both by the temperature of the emitting body and by the temperature of the absorbing body.

Thermal energy is a broad spectrum of values

To develop his law, Planck postulated that thermal energy (E) at the molecular level, equals the Planck constant (h) times the frequency of oscillation (ν, the Greek letter nu). This simple equation E=hν says that thermal energy of oscillation (E) of a single, frictionless, molecular-bond-scale oscillator is merely the frequency of oscillation of that particular oscillator times a scaling constant. Thus, thermal energy is physically frequency of oscillation, and the Planck constant (h) is the number of electronvolts or joules of energy contained in one cycle per second of frequency of oscillation. E=hν is plotted as an alternative x-axis at the top of the figure. E=hν is now known as the Planck-Einstein relation and is widely accepted as accurate.

E=hν also applies at the macroscopic level to the total thermal energy contained within radiation. In this case, frequency of oscillation (ν), plotted on the lower x-axis, is a broad spectrum or a continuum of values that all coexist. Thus, energy (E), plotted on the upper x-axis, is a similar broad spectrum or continuum of values that all coexist. Note from Planck’s Law that energy is a function of frequency, not intensity, amplitude, or amount. There is a different energy at each frequency. The total energy of radiation, therefore, is the result of the simultaneous oscillation of all the bonds holding matter together—the co-existence of all frequencies of oscillation. Thermal radiation is the result of a very, very large number of molecular scale oscillators, all oscillating simultaneously on the surface of the radiating body.

Again, Planck’s law was derived by trial and error to describe accurately the observed physical properties of thermal radiation. These figures show clearly that what we perceive as temperature of matter is the result of a very broad spectrum of frequencies of oscillation of all the bonds holding matter together. Similarly, increased temperature is the result of increased amplitudes of oscillation at each and every frequency of oscillation. For the temperature of a body of matter to increase by absorbing radiation, that radiation must come from a hotter body that is emitting radiation containing higher amplitudes of oscillation at each and every frequency. This is why a body of matter cannot be heated by its own radiation. Its own radiation does not contain the higher amplitudes of oscillation required to raise the temperature.

The fundamental mistake regarding greenhouse-warming theory

For centuries, heat was thought of as an element, a substance, a subtle fluid, where the greater the amount of heat a body contained, the hotter the body must become. Beginning in 1798, this concept began to evolve to current widespread thinking that heat is not a thing, but simply a flux of an unspecified thing that we call thermal energy. This thermal energy is assumed to be quantified by the number or amount of watts (energy per second) passing through a surface area of one square meter—the greater the amount of flux in minus flux out, the higher the resulting temperature. Note that this definition does not require us to specify or even understand what thermal energy is physically.

In 1896, Svante Arrhenius quantified greenhouse-warming theory by simply assuming that temperature was a function of the amount of solar flux absorbed by Earth minus the amount of flux radiated back into space. This is the primary assumption underlying greenhouse-warming theory today. This is the way scientists think today when they argue that greenhouse gases slow the cooling of Earth, decreasing the flux of heat away from Earth, so that Earth must, therefore, get hotter. But this is not the way heat flows.

Throughout the late 19th century, physicists were measuring the physical properties of visible light and infrared radiation carefully in the laboratory and in the field. There was general confusion, however, that still exists today. They thought of light as traveling as waves, plotting wavelength on the x-axis, where wavelength is thought to equal the velocity of light divided by wave frequency. But waves travel by the deformation of matter and there is no matter in space, no luminiferous aether, through which waves can travel. Physicists thought they were measuring intensity in watts per square meter because their sensors produced watts of electricity. They then integrated energy on the y-axis as a function of wavelength on the x-axis to get total energy. Even Planck, after postulating that E=hν, did not stop to think that energy should, therefore, be plotted on an alternate x-axis rather than on the y-axis. And no one realized that it makes no physical sense to integrate as a function of wavelength or frequency. When you shine many frequencies of light on the same location in air and space, they all simply coexist. There is no physical way for frequencies of oscillation to interact, to be added together, or even to be seen until they interact with matter. I do not show numbers on the y-axis because amplitude of oscillation needs to be calibrated in the laboratory. Amplitude of oscillation is clearly what makes a given frequency of oscillation appear brighter—more intense.

This was also the time when physicists were just beginning to understand the atomic nature of matter. Electrons had just been discovered in 1897 and the nucleus of atoms would not be discovered until 1909. It would be many decades before physicists began to understand that thermal energy was the oscillation of all the bonds holding matter together.

This flux approach to heat has worked reasonably well even to this day when temperatures are within a narrow range. In the case of global warming, however, Sun is 20 times hotter than Earth and the flux approach breaks down catastrophically. This mistaken assumption that radiant energy can be described accurately by a single amount of flux, a single number of watts per square meter, is the primary reason why greenhouse-warming theory is mistaken.

Thermal energy, heat, and temperature in matter are all observed to be the result of simultaneous oscillation of all the bonds holding matter together—a broad spectrum or continuum of frequencies of oscillation that coexist. Each degree of freedom of each bond oscillates at a frequency of oscillation that we perceive as a color for visible light and an amplitude of oscillation that we perceive as intensity or brightness of that color.

In 1900, Knut Ångström showed by experiment that carbon dioxide absorbed less than 16% of the infrared frequencies of oscillation radiated by Earth (the black vertical lines shown in the Planck’s Law figure) and that this absorption did not seem to have any effect on air temperature. Planck’s Law shows us that heat consists of a broad spectrum or continuum of frequencies of oscillation. Absorbing 16% of these frequencies, therefore, does not constitute heat just as 16% of a person does not constitute a person. Greenhouse gases do not absorb heat. If these absorbed frequencies were re-emitted and then absorbed by some piece of matter, they would not warm that matter even to the temperature of Earth. They do not contain the broad spectrum or continuum of frequencies that make up heat.

Ångström’s paper convinced most physicists in 1900 that greenhouse gases could not explain global warming. The fundamental breakdown in the scientific method regarding greenhouse gases occurred in 1938 when Guy Callendar, a British steam engineer, resuscitated greenhouse-warming theory from the trash heap of history, summarily dismissing Ångström’s paper in a few words contained in boxes of detailed notes. Ångström was the last physicist to think carefully about the physics of greenhouse-warming theory until 2010 when tracking down several enigmas in global warming caused me to question the physics involved.

How Heat Flows

If you take two bodies of matter that are identical in every way except for temperature and connect them together so that heat can flow by radiation or conduction, the resulting temperature at thermal equilibrium will be the average of the two temperatures, not the sum of the two temperatures.

If you shine a light on a small black object, the rate of warming, the rate that heat flows, similarly decreases with decreasing difference in temperature forming an asymptotic curve shown by the black line in the figure. The red line shows the temperature calculated by multiplying 4.6% times the average of the existing temperature and the ending temperature at each 10-second interval. The 4.6% has to do with the conductivity of heat into the black object. Similar asymptotic curves are observed for both warming and cooling of matter by conduction or by absorbing or emitting radiation. The flux of heat is determined by the temperature difference, not by the amount of flux as currently assumed by greenhouse-warming theory and by most physicists.

The next question is how does a broad spectrum of frequencies of oscillation flow through air and space? The simplest example is a single frequency transmitted by a radio station. The radio program modulates a center frequency assigned by the government to prevent interference with other nearby stations. The radio transmitter causes oscillations of this modulated center frequency on the surface of the radio antenna. You tune your radio receiver to resonate at that specific center frequency. Resonance, also known as sympathetic vibration, is the way two oscillators oscillating at the same frequency can, under the best of conditions, average their amplitudes of oscillation, effectively transferring amplitude from the transmitter to the receiver. In this way, your radio receiver detects the center frequency of the radio station from all the other frequencies out there.

Resonance is observed to transfer amplitude of oscillation only from higher amplitude to lower amplitude, which Planck’s Law shows clearly is from higher temperature to lower temperature. Resonance occurs between a discrete molecular oscillator on the surface of the emitting body and a discrete molecular oscillator on the surface of the absorbing body. Radiant heat travels through air and space when resonance occurs simultaneously between different pairs of oscillators at each and every frequency of oscillation of all the molecular oscillators on the surface of matter.

Resonance is all around us. You experience resonance most clearly when you push a child on a swing. If you push at exactly the same frequency as the swing is swinging, the amplitude of the swing will increase. You tune radio and television receivers to resonate at whatever frequency your preferred station is transmitting. Your cellphone is tuned to resonate with the different frequencies of transmission and reception used at a local cell tower. Individual hair cells, called cilia, in the cochlea of your ears resonate with sounds in air, sending signals to your brain, allowing you to hear. Visible colors, which are frequencies of oscillation between 400 and 789 trillion cycles per second, resonate with cells in the cones of your eyes that send signals to your brain, allowing you to see.

For centuries, scientists have argued whether light, in the form of electromagnetic radiation, travels through space as waves or as particles. Waves and particles, however, describe how the energies of motion of physical pieces of matter are visualized as traveling. But light, is not physical matter and light cannot be observed until it interacts with physical matter. Heat is simply a broad spectrum of frequencies of oscillation where each discrete molecular oscillator on the surface of the emitting matter resonates with a discrete molecular oscillator on the surface of the absorbing matter, radiating amplitude of oscillation for each frequency of oscillation simultaneously by resonance.

Conduction is resonance enabled by physical contact of molecules of matter. Radiation is resonance enabled by the interaction of what we think of as electric and magnetic fields via line of sight where what we think of as the velocity of light is proportional to the very short time required for resonance to occur. Frequency of oscillation is observed not to change with distance, even over galactic distances, except for Doppler effects where the source and receiver are moving relative to each other. Similarly, amplitude of oscillation is not observed to change with distance. Thus, the Planck temperature of radiation from Sun is the same close to Sun as it is close to Earth. But the thermal effect of solar radiation is observed to decrease with the square of the distance. What appears to be happening is that the density of molecular bonds on the surface of matter that resonate decreases with distance so that the amplitude increase must be shared with increasing numbers of bonds.

Conclusions

Greenhouse-warming theory cannot physically cause observed global warning. It is physically impossible for a body of matter to be warmed by its own radiation because its own radiation does not include the higher amplitudes of oscillation required to cause a higher temperature as shown by Planck’s law.

Greenhouse gases cannot act as a blanket warming Earth because a blanket has no way to increase the amplitudes of oscillation required to cause a higher temperature unless it is an electric blanket providing thermal energy from elsewhere.

Greenhouse-warming theory assumes that radiation from Sun is the same physical thing as radiation from Earth except that there is a much larger amount of it. Planck’s law shows clearly that the physical properties of solar radiation are distinctly different from the physical properties of terrestrial radiation. Radiation from Sun can burn your skin. No amount of radiation from Earth can cause sunburn.

Greenhouse-warming theory assumes that fluxes of heat are additive. Heat flux, however, is clearly observed in warming and cooling curves to be a function of the average of the existing and ultimate temperature at any moment in time. Such averaging is done in Nature by resonance between discrete molecular-bond-scale oscillators oscillating at the same frequency on the surface of the emitting and absorbing bodies. Radiation is the result of the simultaneous resonance of a very large number of oscillators at all the frequencies contained within the frequency spectrum for a body at a given temperature shown by Planck’s law.

Greenhouse-warming theory is clearly mistaken. Reducing greenhouse-gas emissions will clearly not decrease observed global warming. There is no physical basis to support climate models that predict major global warming in the next few decades. We can burn fossil fuels safely provided we minimize pollution.

 

More information

An 11-page summary of the details for a general audience

A 20-page scientific paper A Most Inconvenient Reality — Greenhouse Gases Cannot Physically Explain Observed Global Warming submitted to the Journal of Geophysical Research on May 28, 2018, that describes these issues in more detail. This file includes the editor’s email rejecting the paper without review.